

MASTER OF COMPUTER APPLICATIONS

SEMESTER – III

S.No.	Course	Course Name	Hours per			Credits
	code		L	T	P	
1.	21F00301	Web Technologies	4	0	0	4
2.	21F00302	Big Data Technologies	4	0	0	4
3.	21F00303	Dev Ops & Agile Programming	4	0	0	4
5.		Program Elective – II	3	0	0	3
	21F00304a	Software Architecture & Design Patterns				
	21F00304b	Network Security				
	21F00304c	Machine Learning				
6.		Program Elective – III	3	0	0	3
	21F00305a	Mobile Application Development				
	21F00305b	Internet of things				
	21F00305c	Block chain Technologies				
7.	21F00306	Web Technologies Laboratory	0	1	2	2
8.	21F00307	Big Data Technologies Laboratory	0	1	2	2
9.	21F00308	Dev Ops& Agile Programming Laboratory	0	1	2	2
10.	21F00309	Summer Internship / Industry Oriented Mini Project/	-	-	-	2
		Skill Development Course (Minimum 6 weeks)				
11.	21F00310	Skill oriented Course – II	1	0	2	2
		MEAN Stack Development				
		TOTAL	18	4	8	28

SEMESTER - IV

S.No.	Course	Course Name	Hou	rs pe	r	Credits
	code		L	T	P	
1.		Program Elective- IV	3	0	0	3
	21F00401a	Deep Learning				
	21F00401b	Social Media Analysis				
	21F00401c	Multimedia Systems and Tools				
2.		Open Elective – II	3	0	0	3
	21F00402a	Cyber Laws				
	21F00402b	Entrepreneurship				
	21F00402c	NOSQL Databases				
3.	21F00403	Project Work	0	0	20	10
4.	21F00404	Comprehensive Viva Voce	-	-	-	2
		TOTAL	6		20	18

Course Code	WEB TECHNOLOGIES	L	T	P	С
21F00301		4	0	0	4
	Semester			III	
Course Objectives	:				
To introduce	ee PHP language for server-side scripting				
To introduce	ee XML and processing of XML Data with Java				
To introduce	ee Server-side programming with Java Servlets and JSP				
	the Client-side scripting with Javascript and AJAX.				
	(CO): Student will be able to				
Gain know.	ledge of client-side scripting, validation of forms and AJAX progra	ımn	ning		
 Understand 	server-side scripting with PHP language				
	what is XML and how to parse and use XML Data with Java				
	ee Server-side programming with Java Servlets and JSP				
UNIT - I			cture		
	P: Declaring variables, data types, arrays, strings, operators, express				
	s, Reading data from web form controls like text boxes, radio butto				
	ads. Connecting to database (MySQL as reference), executing simple	ole o	querie	es,	
	andling sessions and cookies				
	IP: File operations like opening, closing, reading, writing, appendix	ng, o	deleti	ng etc	•
	ïles, listing directories				
UNIT - II		Le	cture	Hrs:	
	gs- List, Tables, images, forms, Frames; Cascading Style sheets;				
	to XML, Defining XML tags, their attributes and values, Document				
	cument Object Model, XHTML Parsing XML Data – DOM and S.				ava.
UNIT - III			cture		
	vlets: Common Gateway Interface (CGt), Life cycle of a Servlet, de				
	API, Reading Servlet parameters, Reading Initialization parameters			ing Ht	tp
	es, Using Cookies and Sessions, connecting to a database using JD				
UNIT - IV			cture	Hrs:	
	: The Anatomy of a JSP Page, JSP Processing, Declarations, Direct				
	Snippets, implicit objects, Using Beans in JSP Pages, Using Cookie	es a	nd se	ssion	
	, connecting to database in JSP.				
UNIT - V					
	g: Introduction to JavaScript, JavaScript language – declaring vari				_
	event handlers (on click, on submit etc.), Document Object Mode	el, F	orm v	alidat	ion.
Text Books:					
	ologies, Uttam K Roy, Oxford University Press				
2. The Compl	ete Reference PHP — Steven Holzner, Tata McGraw-Hil				

MASTER OF COMPUTER APPLICATIONS

Course Code	BIG DATA TECHNOLOGIES	L	T	P	C
21F00302		4	0	0	4
	Semester			III	
Course Objectiv					
 To under analytics. 	stand the specialized aspects of big data including big data app	licat	ion,	and b	ig data
•	different types Case studies on the current research and application industry.	ns c	f the	Hado	op an
	s (CO): Student will be able to				
	ne challenges and their solutions in Big Data				
	nd and work on Hadoop Framework and eco systems.				
	and Analyze the Big Data using Map-reduce programming in Bo	th F	ladoc	p and	l Spar
framewor				•	•
 Demonstr 	rate spark programming with different programming languages.				
 Demonstr 	rate the graph algorithms and live streaming data in Spark				
UNIT – I		Le	cture	Hrs:	
What is big data,	why big data, convergence of key trends, unstructured data, industry	exa	mple	s of	
big data, web ana	lytics, big data and marketing, fraud and big data, risk and big data,	cred	t risk		
	data and algorithmic trading, big data and healthcare, big data in me				
	g data, big data technologies, introduction to Hadoop, open source to			es	
	a, mobile business intelligence, Crowd sourcing analytics, inter and t				
analytics	, moone outsiness moonigenees, erowe sourcing unurjees, moor unu		1110		
UNIT – II		Le	cture	Hrs:	
Introduction to N	oSQL, aggregate data models, aggregates, key-value and document of	data	mode	els,	
	oh databases, schemaless databases, materialized views, distribution				
sharding, master-	slave replication, peer-peer replication, sharding and replication, con	siste	ency,		
relaxing consiste	ncy, version stamps, map-reduce, partitioning and combining, of	comp	osing	g map	reduc
calculations					
UNIT – III		Le	cture	Hrs:	
	ysing data with Hadoop, scaling out, Hadoop streaming, Hadoop pip				
_	ed file system (HDFS), HDFS concepts, Java interface, data flow, Ha	idoo	p I/O	, data	
integrity, compres	ssion, serialization, Avro, file-based data structures				
UNIT – IV			cture		
•	flows, unit tests with MRUnit, test data and local tests, anatomy of M	•			
•	ap-reduce, YARN, failures in classic Map-reduce and YARN, job s	che	luling	g, shuf	fle an
	on, MapReduce types, input formats, output formats.				
UNIT – V					
	l and implementations, Hbase clients, Hbase examples, praxis. Cassi				
	odel, Cassandra examples, Cassandra clients, Hadoop integration, H		data	types	
	HiveQL data definition, HiveQL data manipulation, HiveQL queries				
Text Books:					

Text Books:

- 1. Big Data Analytics, Introduction to Hadoop, Spark, and Machine-Learning, Raj kamal, PreetiSaxena, McGraw Hill, 2018.
- 2. Big Data, Big Analytics: Emerging Business intelligence and Analytic trends for Today's Business, Michael Minelli, Michelle Chambers, and AmbigaDhiraj, John Wiley & Sons, 2013

Course Code	DEVOPS & AGILE PROGRAMMING	L	T	P	C
21F00303		4	0	0	4
	Semester			III	
Course Object	ives:				
 To give 	e strong knowledge of Agile practices				
 To give 	e strong foundation of applications of DevOps				
• To give	e strong foundation of development and its operations				
• To give	e strong foundation of the source code management				
	nes (CO): Student will be able to				
Unders	tand the traditional software development.				
	he rise of agile methodologies.				
	and design purpose of DevOps				
	tand applied DevOps.				
	eal world applications of DevOps.				
	tand its practical examples.				
UNIT - I		Lec	ture l	Hrs:	
Why Agile?, I	Now to be Agile, Understanding XP, Values and Principles, Improve				minate
Waste, Deliver				ŕ	
Practicing XP	Thinking, Pair Programming, Energized Work, Informative W	orksp	ace,	Root	-Cause
	spectives, Collaborating, Sit Together, Real Customer Involvement.				
	ings, Coding Standards, Iteration Demo, Reporting.				
UNIT - II		Lec	ture I	Hrs:	
Releasing-Done	e Done, No Bugs, Version Control, Ten-Minute Build, Continuous	Integ	ratio	n, Col	lective
Code Ownershi	p, Documentation.				
Planning-Vision	n, Release Planning, Risk Management, Iteration Planning, Stories, E	stima	ting.		
UNIT - III		Lec	ture I	Hrs:	
	remental Requirements, Customer Tests, Test- Driven Deve	lopme	ent,	Refac	toring,
	sign and Architecture, Spike Solutions, Performance Optimization.				
UNIT - IV			ture l		
	& PURPOSE OF DEVOPS: Introduction to DevOps - DevOps and A	Agile,	Min	imum	Viable
	cation Deployment - Continuous Integration - Continuous Delivery				
UNIT - V					
	URE, AUTOMATION, MEASUREMENT AND SHARING): CAM				
	omation - CAMS - Measurement - CAMS - Sharing - Test-I				
-	Management - Infrastructure Automation - Root Cause Analys	sis –	Blaı	meless	ness -
Organizational	Learning.				
Text Books:					
1. James Sh	ore and Shane Warden, "The Art of Agile Development", O'REILL'	Y, 200)7.		
2 D.1	Maria (A. il. C. C		, DI	11 200	12

- 2. Robert C. Martin, "Agile Software Development, Principles, Patterns, and Practices", PHI, 2002.
- 3. The DevOps Handbook by Gene Kim, Jez Humble, Patrick Debois, and Willis Willis
- 4. What is DevOps? by Mike Loukides
- 5. The DevOps Handbook by John Willis, Patrick Debois, Jez Humble, Gene Kim.
- 6. DevOps: A Software Architect's Perspective by Len Bass, Ingo Weber, Liming Zhu.

MASTER OF COMPUTER APPLICATIONS

Course Code 21F00304a SOFTWARE ARCHITECTURE AND DESIGN PATTER	27	L	T	P	С
	Ü	3	0	0	3
Semes	er		v	III	
	,01				
Course Objectives:					
Learn How to add functionality to designs while minimizing complexity					
• What code qualities are required to maintain to keep code flexible?					
To Understand the common design patterns.					
To explore the appropriate patterns for design problems					
Course Outcomes (CO): Student will be able to					
Design and implement codes with higher performance and lower complex	ity				
• Experience core design principles and be able to assess the quality of a d	esig	n wi	th res	spect t	o these
principles.				_	
 Capable of applying these principles in the design of object oriented syste 	ms.				
• Demonstrate an understanding of a range of design patterns. Be capable	ofco	mpr	ehen	ding a	design
presented using this vocabulary.					
 Be able to select and apply suitable patterns in specific contexts 					
UNIT – I			cture		
Envisioning Architecture The Architecture Business Cycle, What is Software A		itect	ure,	Archi	tectural
patterns, reference models, reference architectures, architectural structures and vie			_		
Creating an Architecture Quality Attributes, Achieving qualities, Architect					
designing the Architecture, Documenting software architectures, Reconstructing S	oftv				re.
UNIT – II			cture		CD A M
Analyzing Architectures Architecture Evaluation, Architecture design decision					
Moving from One System to Many Software Product Lines, Building system components, Software architecture in future	tems	s ire	om ()11 tn	e snen
•		Ιω	cture	Hrc.	
	ms				118206
UNIT - III Patterns Pattern Description Organizing catalogs role in solving design problem.	/IIIO,				
Patterns Pattern Description, Organizing catalogs, role in solving design proble		ne s	,,,,,	, ,	idapier,
Patterns Pattern Description, Organizing catalogs, role in solving design proble Creational and Structural Patterns Abstract factory, builder, factory method, pro-		pe, s			
Patterns Pattern Description, Organizing catalogs, role in solving design proble Creational and Structural Patterns Abstract factory, builder, factory method, probridge, composite, façade, flyweight.			cture	Hrs:	
Patterns Pattern Description, Organizing catalogs, role in solving design proble Creational and Structural Patterns Abstract factory, builder, factory method, pro-	toty	Leo	cture emer		server,
Patterns Pattern Description, Organizing catalogs, role in solving design proble Creational and Structural Patterns Abstract factory, builder, factory method, probridge, composite, façade, flyweight. UNIT – IV	toty	Leo			server,
Patterns Pattern Description, Organizing catalogs, role in solving design proble Creational and Structural Patterns Abstract factory, builder, factory method, probridge, composite, façade, flyweight. UNIT – IV Behavioral Patterns Chain of responsibility, command, Interpreter, iterator, med state, strategy, template method, visitor.	toty	Leo			oserver,
Patterns Pattern Description, Organizing catalogs, role in solving design proble Creational and Structural Patterns Abstract factory, builder, factory method, probridge, composite, façade, flyweight. UNIT – IV Behavioral Patterns Chain of responsibility, command, Interpreter, iterator, medical problems.	iato	Leor, m	emen	ito, ob	
Patterns Pattern Description, Organizing catalogs, role in solving design proble Creational and Structural Patterns Abstract factory, builder, factory method, probridge, composite, façade, flyweight. UNIT – IV Behavioral Patterns Chain of responsibility, command, Interpreter, iterator, meditate, strategy, template method, visitor. UNIT – V	iato:	Leor, m	emen	to, ob	e study
Patterns Pattern Description, Organizing catalogs, role in solving design proble Creational and Structural Patterns Abstract factory, builder, factory method, probridge, composite, façade, flyweight. UNIT – IV Behavioral Patterns Chain of responsibility, command, Interpreter, iterator, medistate, strategy, template method, visitor. UNIT – V Case Studies A-7E – A case study in utilizing architectural structures, The World	iato Wi	Leor, m	Veb -	a cas	e study ech – a

Standards, Supporting Multiple Window Systems, User Operations, Spelling Checking and Hyphenation. **TEXT BOOKS:**

- 1. Software Architecture in Practice, second edition, Len Bass, Paul Clements & Rick Kazman, Pearson Education, 2003.
- 2. Design Patterns, Erich Gamma, Pearson Education, 1995.

REFERENCE BOOKS:

- 1. Beyond Software architecture, Luke Hohmann, Addison wesley, 2003.
- 2. Software architecture, David M. Dikel, David Kane and James R. Wilson, Prentice Hall PTR, 2001 3.

- 3. Software Design, David Budgen, second edition, Pearson education, 2003
- 4. Head First Design patterns, Eric Freeman & Elisabeth Freeman, O'REILLY, 2007.
- 5. Design Patterns in Java, Steven John Metsker & William C. Wake, Pearson education, 2006
- 6. J2EE Patterns, Deepak Alur, John Crupi& Dan Malks, Pearson education, 2003.
- 7. Design Patterns in C#, Steven John metsker, Pearson education, 2004.
- 8. Pattern Oriented Software Architecture, F.Buschmann& others, John Wiley & Sons.

MASTER OF COMPUTER APPLICATIONS

Course Code	NETWORK SECURITY	L	T	P	С
21F00304b		3	0	0	3
	Semester			III	
		L			
Course Object	ves:				
•	Network security using various cryptographic algorithms.				
•	Underlying network security applications. It also focuses on the pr	actica	l app	licatio	ns tha
	have been implemented and are in use to provide email and websec	urity.			
Course Outcor	es (CO): Student will be able to				
 Underst 	and the most common type of cryptographic algorithm				
 Underst 	and the Public-Key Infrastructure				
 Underst 	and security protocols for protecting data on networks				
 Be able 	to digitally sign emails and files				
• Understauthent	and vulnerability assessments and the weakness of using passwords	for			
	to perform simple vulnerability assessments and password audits				
UNIT - I	o perform simple vulnerability assessments and password addits	Lec	ture I	Irc.	
	s and Mechanisms, Security Attacks, Security Services, Integrity of				nature
authentication, 1		JIICCK,	uigit	ar big	nature
UNIT - II	us ungermans.	Lec	ture I	Hrs.	-
	n, DES rounds, S-Boxes IDEA: Overview, comparison with DES				IDE/
• •	Secret key Cryptography; ECB, CBC, OFB, CFB, Multiple encrypt	•	•	,	12 2.
UNIT - III		Lec	ture I	Hrs:	,
	uses, algorithms (MD2, MD4, MD5, SHS) MD2: Algorithm (Pado				
	algorithm (padding, stages, digest computation.) SHS: Over-				
•	mples, Modular arithmetic (addition, multiplication, inverse, and	d expo	nenti	ation)	RSA
	encryption and decryption. Other Algorithms: PKCS,				
	El-Gamal signatures, DSS, Zero-knowledge signatures.				
UNIT - IV			ture I		
	, Address Based, Cryptographic Authentication. Passwords in dist				
	ssing, storing. Cryptographic Authentication: passwords as k				
	evocation, Interdomain, groups, delegation. Authentication o		ple:	Verif	icatio

techniques, passwords, length of passwords, password distribution, smart cards, biometrics.

UNIT - V

What is security policy, high and low level policy, user issues? Protocol problems, assumptions, Shared secret protocols, public key protocols, mutual authentication, reflection attacks, use of timestamps, nonce and sequence numbers, session keys, one-and two-way public key based authentication.

Text Books:

- AtulKahate, Cryptography and Network Security, McGraw Hill.
- Kaufman, c., Perlman, R., and Speciner, M., Network Security, Private Communication in a public world, 2nd ed., Prentice HallPTR., 2002.
- 3. Stallings W.Cryptography and Network Security: Principles and Practice, 3rd ed., Prentice Hall PTR.,2003
- 4. Stallings, W. Network security Essentials: Applications and standards, Prentice Hall, 2000.
- 5. Cryptography and Network Security; McGraw Hill; Behrouz A Forouzan.
- 6. Information Security Intelligence Cryptographic Principles and App. Calabres Thomson.
- Securing A Wireless Network Chris Hurley SPD.

	MASTER OF COMPUTER APPLICATIONS				
Course Code	MACHINE LEARNING	Т	Т	P	C
21F00304c	MACHINE LEARNING	<u>L</u>	0	0	3
21F00304C	Semester	3	U	III	<u> </u>
	Semester			1111	
Course Objectives:					
This course	explains machine learning techniques such as decision tree learn	ing, E	Bayes	sian	
learning etc.					
 To understa 	nd computational learning theory.				
 To study the 	e pattern comparison techniques.				
Course Outcomes ((CO): Student will be able to				
	the concepts of computational intelligence like machine learning				
	et the skill to apply machine learning techniques to address the re	al tin	ne pro	oblem	S
in different					
	the Neural Networks and its usage in machine learning application				
UNIT - I			ture]		
	-posed learning problems, designing a learning system, Perspecti	ves a	nd is	sues ir	n
machine learning					
	d the general to specific ordering – introduction, a concept learning				
	ind-S: finding a maximally specific hypothesis, version spaces ar			lidate	
	m, remarks on version spaces and candidate elimination, inductive				
	ning – Introduction, decision tree representation, appropriate prob				on
•	sic decision tree learning algorithm, hypothesis space search in de	ecisio	n tre	e	
	bias in decision tree learning, issues in decision tree learning	-			
UNIT - II			ture]		
	tworks-1– Introduction, neural network representation, appropria				
	ning, perceptions, multilayer networks and the back-propagation				
	tworks-2- Remarks on the Back-Propagation algorithm, An illust	rative	e exa	mpie:	
	vanced topics in artificial neural networks.	1	1		
	ses – Motivation, estimation hypothesis accuracy, basics of samp				
	r deriving confidence intervals, difference in error of two hypothe	eses,	comp	aring	
learning algorithms. UNIT - III		Lac	ture l	(Tmax	
	Interded in December 1 and 1 and 1 and 1 and 1				
· ·	Introduction, Bayes theorem, Bayes theorem and concept learning	_		um	
	t squared error hypotheses, maximum likelihood hypotheses for p		_	Mairra	
_	num description length principle, Bayes optimal classifier, Gibs all	_			
	example: learning to classify text, Bayesian belief networks, the laing theory – Introduction, probably learning an approximately co				o.
	for finite hypothesis space, sample complexity for infinite hypoth				5,
mistake bound mode		C313 S	pace	s, uie	
	rning- Introduction, k-nearest neighbour algorithm, locally weigh	ted ra	orec	sion	
	is, case-based reasoning, remarks on lazy and eager learning	icu it	gies	31011,	
TINIT IV	is, case-based reasoning, remarks on fazy and eager realining	Lag	turo l	Imar	

Lecture Hrs: Genetic Algorithms – Motivation, Genetic algorithms, an illustrative example, hypothesis space

search, genetic programming, models of evolution and learning, parallelizing genetic algorithms. Learning Sets of Rules – Introduction, sequential covering algorithms, learning rule sets: summary, learning First-Order rules, learning sets of First-Order rules: FOIL, Induction as inverted deduction, inverting resolution.

Reinforcement Learning - Introduction, the learning task, Q-learning, non-deterministic, rewards and actions, temporal difference learning, generalizing from examples, relationship to dynamic programming.

MASTER OF COMPUTER APPLICATIONS

UNIT - V

Analytical Learning-1- Introduction, learning with perfect domain theories: PROLOG-EBG, remarks on explanation-based learning, explanation-based learning of search control knowledge.

Analytical Learning-2-Using prior knowledge to alter the search objective, using prior knowledge to augment search operators.

Combining Inductive and Analytical Learning – Motivation, inductive-analytical approaches to learning, using prior knowledge to initialize the hypothesis

Text Books:

1.Machine Learning – Tom M. Mitchell, - MGH

and update)
Text Books:

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY ANANTAPUR (Established by Govt. of A.P., ACT No.30 of 2008) ANANTHAPURAMU – 515 002 (A.P) INDIA

MASTER OF COMPUTER APPLICATIONS

Course Code	MOBILE APPLICATION DEVELOPMENT	L	T	P	C
21F00305a		3	0	0	3
	Semester			III	
Course Objectives					
	trate their understanding of the fundamentals of Android operating	ig sys	tems		
 To improve 	es their skills of using Android software development tools				
To demonst	trate their ability to develop software with reasonable complexity	on m	obile	platfo	rm
To demonst	trate their ability to deploy software to mobile devices				
To demonst	trate their ability to debug programs running on mobile devices				
Course Outcomes	(CO): Student will be able to				
Student und	derstands the working of Android OS Practically.				,
	l be able to develop Android user interfaces				
	l be able to develop, deploy and maintain the Android Application				
UNIT – I			ture I		
	lroid Operating System: Android OS design and Features – Andr				
	eatures, Installing and running applications on Android Studio, C				
	ons, Best practices in Android programming, Android too				
	lroid Manifest file, Externalizing resources like values, them	es, la	ayout	s, Me	nus etc,
	rent devices and languages, Runtime Configuration Changes				
	n Lifecycle – Activities, Activity lifecycle, activity states, monito				S.
UNIT – II			ture I		
	face: Measurements – Device and pixel density independent mea	suring	UNI	T - S	
	Relative, Grid and Table Layouts	. 1.	1.77	, 1	
	Components – Editable and non-editable Text Views, Buttons, F				
	es, Spinners, Dialog and pickers Event Handling – Handling clie				
	gments – Creating fragments, Lifecycle of fragments, Fragment				
	g, removing and replacing fragments with fragment transacti	ons, 1	nterra	acing i	between
	vities, Multi-screen Activities	T	ture I	Tuo.	
UNIT – III	note: Intent Heing intents to launch Activities Evalicity stanti				Implicit
	asts: Intent – Using intents to launch Activities, Explicitly starti	_		•	•
	a to Intents, Getting results from Activities, Native Actions, using				
	padcast Receivers – Using Intent filters to service implicit Intents				
	Intents received within an Activity Notifications - Creating and	Dispi	ayınş	g noun	cations,
Displaying Toasts UNIT – IV		Lac	ture I	Jrc.	
	Files – Using application specific folders and files, creating files				m files
	a directory Shared Preferences – Creating shared preferences,				
using Shared Prefer		,u v 1112	, and	CHIC VI	iis data
UNIT – V		T			
	action to SQLite database, creating and opening a database,	creati	ng ta	bles. i	nserting
	lelg data, Registering Content Providers, Using content Provider		_		_
1 1 1 1		~ (1110	, u	-10.0,	1 3 11 10 7 0

1. Professional Android 4 Application Development, Reto Meier, Wiley India, (Wrox)2012

2. Android Application Development for Java Programmers, James C Sheusi, Cengage Learning, 2013

Course Objectives: Introduce the fundamental concepts of IoT and physical of Expose the student to a variety of embedded boards and I	Semester	3	0	0 III	3
Introduce the fundamental concepts of IoT and physical of IoT.	Semester			111	
Introduce the fundamental concepts of IoT and physical of IoT.					
Introduce the fundamental concepts of IoT and physical of IoT.					
	omputin a				
 Expose the student to a variety of embedded boards and formal control of the communication protocol. 		iaatia			
		icatio	ms.		
• Familiarize the student with application program interfac	es for for.				
• Enable students to create simple IoT applications.					
Course Outcomes (CO): Student will be able to					
• Choose the sensors and actuators for an IoT application					
Select protocols for a specific IoT application APV 6 J. T					
• Utilize the cloud platform and APIs for IoT applications					
Experiment with embedded boards for creating IoT proto	types				
Design a solution for a given IoT application Example 1.11.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1					
Establish a startup Continue		Τ	4	T T	
UNIT – I Overview of IoT:		Lec	ture	HIS:	
The Technology of the Internet of Things, Enchanted Objects, W Design Principles for Connected Devices: Calm and Ambient Connected Devices, Affordances. Prototyping: Sketching, Familiarity, Costs Vs Ease of Prototy	Technology, Privacy	y, Wo	eb T	hinkii	ng fo
source Vs Close source, Tapping into the community.		1			
UNIT – II		Lec	ture	Hrs:	
Embedded Devices: Electronics, Embedded Computing Basics, Arduino, Raspberr Computing: Always-on Internet of Things	y Pi, Mobile phon	es ar	nd ta	blets,	, Plu
UNIT – III		Lec	ture	Hrs:	
Communication in the IoT:					
Internet Communications: An Overview, IP Addresses, M.	AC Addresses, TC	P ar	nd U	JDP	Ports
Application Layer Protocols					
Prototyping Online Components:					
Getting Started with an API, Writing a New API, Real-Time Rea	ctions, Other Protoco				
UNIT – IV			ture		
Business Models: A short history of business models, The business Models and the business models are the business models.		Who	is th	he bu	sines
model for, Models, Funding an Internet of Things startup, Lean S	•	1			
Manufacturing: What are you producing, Designing kits, Designi	ng printed circuit bo	ards.			
UNIT – V Manufacturing continued: Manufacturing printed circuit bear	da Masa maduaina	tha	0000	054	oth -
Manufacturing continued: Manufacturing printed circuit board	is, iviass-producing	ıne	case	and	oine
tivitures Certification Costs Scaling up software					
	nvironment Solution	10			
fixtures, Certification, Costs, Scaling up software. Ethics: Characterizing the Internet of Things, Privacy, Control, E Text Books:	nvironment, Solution	ns.			

Course Code	BLOCK CHAIN TECHNOLOGIES	L	T	P	С
21F00305c		3	0	0	3
1	Semester]	II	
Course Objectives	S:				
 This cours 	e is intended to study the basics of Block chain technology. Durin	g this	cou	se le	arner
will explor	re various aspects of Block chain technology like application in	variou	ıs do	main	s. By
implement	ing learner will have idea about private and public Block chain, ar	nd sn	art c	ontrac	ct
	(CO): Student will be able to				
	d and explore the working of Block chain technology (Understand	ing)			
	e working of Smart Contracts (Analyze)				
	d and analyze the working of Hyper ledger (Analyze).				
	learning of solidity and de-centralized apps on Ethereum (Apply).	_			
UNIT - I			ure I		
	Cryptography and Block chain: What is Block chain, Block				
	tworks, Block chain Origins, Objective of Block chain, Block				
	Blocks, P2P Systems, Keys As Identity, Digital Signatures, Has	shing,	and	publi	c key
	vate vs. public Block chain	_			
UNIT - II			ure I		
	pto currency: What is Bitcoin, The Bitcoin Network, The Bitc			_	
	ents, Bitcoin Wallets, Decentralization and Hard Forks, Ethere				
	ree, Double-Spend Problem, Blockchain And Digital Currency,	Frans	action	nal B	locks,
	hain Technology On Crypto currency.	-			
UNIT - III			ure I		
	hereum: What is Ethereum, Introduction to Ethereum, Consensu				
	Vork, Metamask Setup, Ethereum Accounts, Receiving Ether's W	/hat's	a Tr	ansac	tion?,
Smart Contracts.		¥			
UNIT - IV			ure I		
	per ledger: What is Hyper ledger? Distributed Ledger Technolo			halle	enges,
<u> </u>	stributed Ledger Technology, Hyper ledger Fabric, Hyper ledger (omp	oser.		
UNIT - V	' ' Y ' CMI' NATI IN IN		<u> </u>		. T
	ications: Internet of Things, Medical Record Management Sys	stem,	Don	naın I	Name
	of Block chain, Alt Coins				
Text Books:					
	T 1D D1 1D1 A 1 M/11 10				

- 1. Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller and Steven
- 2. Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive
- 3. Introduction, Princeton University Press (July 19, 2016).
- 4. Antonopoulos, Mastering Bitcoin.
- 5. Antonopoulos and G. Wood, Mastering Ethereum.
- 6. D. Drescher, Blockchain Basics. Apress, 2017.

MASTER OF COMPUTER APPLICATIONS

Course Code	WEB TECHNOLOGIES LABORATORY	L	T	P	C
21F00306		0	0	4	2
	Semester		I	II	

Course Objectives:

- Understand the web technologies to create adaptive web pages for web application.
- Use CSS to implement a variety of presentation effects to the web application
- Know the concept and implementation of cookies as well as related privacy concerns
- Develop a sophisticated web application that employs the MVC architecture.

Course Outcomes (CO):

- Integrate frontend and backend web technologies in distributed systems.
- Facilitate interface between frontend and backend of a web application.
- Debug, test and deploy web applications in different web servers.
- Migrate the web applications to the other platforms like .Net

List of Experiments:

- 1. Write a PHP script to print prime numbers between 1-50.
- 2. PHP script to
- a. Find the length of a string.
- b. Count no of words in a string.
- c. Reverse a string.
- d. Search for a specific string.
- 3. Write a PHP script to merge two arrays and sort them as numbers, in descending order.
- 4. Write a PHP script that reads data from one file and write into another file.
- 5. Develop static pages (using Only HTML) of an online book store. The pages should resemble: www.amazon.com. The website should consist the following pages.
- a) Home page
- b) Registration and user Login
- c) User Profile Page
- d) Books catalog
- e) Shopping Cart
- f) Payment By credit card
- g) Order Conformation
- 6. Validate the Registration, user login, user profile and payment by credit card pages using JavaScript.
- 7. Create and save an XML document on the server, which contains 10 users information. Write a program, which takes User Id as an input and returns the user details by taking the user information from the XML document.
- 8. Install TOMCAT web server. Convert the static web pages of assignments 2 into dynamic web pages using servlets and cookies. Hint: Users information (user id, password, credit card number) would be stored in web.xml. Each user should have a separate Shopping Cart.
- 9. Redo the previous task using JSP by converting the static web pages of assignments 2 into dynamic web pages. Create a database with user information and books information. The books catalogue should be dynamically loaded from the database. Follow the MVC architecture while doing the website

MASTER OF COMPUTER APPLICATIONS

Course Code	BIG DATA TECHNOLOGIES LABORATORY	L	T	P	С
21F00307		0	1	2	2
	Semester		I	II	

Course Objectives:

- Apply quantitative modeling and data analysis techniques to the solution of real-world business problems, communicate findings, and effectively present results using data visualization techniques.
- Apply principles of Data Science to the analysis of business problems.

Course Outcomes (CO):

- Understand and implement the basics of data structures like Linked list, stack, queue, set and map in Java.
- Demonstrate the knowledge of big data analytics and implement different file management task in Hadoop.
- Understand Map Reduce Paradigm and develop data applications using variety of systems.
- Analyze and perform different operations on data using Pig Latin scripts.
- Illustrate and apply different operations on relations and databases using Hive.

List of Experiments:

Week 1:Hadoop Installation on a)Single Node and SPARK Installation, Launch a cloud instance for AWS instance on Centos 7

Week 2: Design a distributed application using MapReduce which processes a log file of a system. List out the users who have logged for maximum period on the system. Use simple log file from the Internet and process it using a pseudo distribution mode on Hadoop platform.

Week 3:Design and develop a distributed application to find the coolest/hottest year from the available weather data. Use weather data from the Internet and process it using MapReduce.

Week 4: Write an application using HBase and HiveQL for flight information system which will include 1) Creating, Dropping, and altering Database tables, 2) Creating an external Hive table to connect to the HBase for Customer Information Table, 3) Load table with data, insert new values and field in the table, Join tables with Hive, 4) Create index on Flight information Table, and 5) Find the average departure delay per day in 2008.

Week 5: Display the hierarchical structure of your data by generating Trees, graphs and network visualization. Install and Run Pig then write Pig Latin scripts to sort, group, join, project and filter the data. Install and Run Hive then use Hive to Create, alter and drop databases, tables, views, functions and Indexes.

Week 6: Input file contains a series of tweets made by few people. Do a word count on the text object value Hint: Json Parsing in python – this sample snippet can be used within Map to read the JSON

Week 7: Reading different types of data sets (.txt, .csv) from web and disk and writing in file in specific disk location. And Reading Excel,XML data sheets in R. Using with and without R objects on console, mathematical functions on console create R objects for calculator application and save in a specified location in disk.

Write an R script to find basic descriptive statistics using summary,str, quartile unction on mtcars& cars datasets and to find subset of dataset by using subset (),aggregate () functions on dataset.

Week 8:

Implementing data visualization using R: Find the data distributions using box and scatter plot, Find the outliers using plot and Plot the histogram, bar chart and pie chart on sample data.

MASTER OF COMPUTER APPLICATIONS

21F00308 0 0 4 2 Semester III	Course Code	DEV OPS & AGILE PROGRAMMING LABORATORY	L	T	P	С
Semester III	21F00308		0	0	4	2
		Semester		I	II	

Course Objectives:

To understand the concept of DevOps with associated technologies and

- methodologies.
- To be familiarized with Jenkins, which is used to build & test software Applications
- & Continuous integration in Devops environment. To understand different Version
- Control tools like GIT, CVS or Mercurial
- To understand Docker to build, ship and run containerized images
- To use Docker to deploy and manage Software applications running on Container.
- To be familiarized with concept of Software Configuration Management &
- provisioning using toolslikePuppet,Chef, Ansible or Saltstack.

Course Outcomes (CO):

- Understand and Implement the Integration and Continuous deployment.
- Can implement anatomy of continuous delivery pipeline.
- Understands and implement static code analysis.

List of Experiments:

Agile Laboratory Programs:

- 1. Understand the background and driving forces fortaking an Agile Approach to Software Development.
- 2. Understand the business value of adopting agileapproach.
- 3. Understand agile development practices
- 4. Drive Development with Unit Test using Test Driven development.
- 5. Apply Design principle and Refactoring to achieve agility
- 6. To study automated build tool.
- 7. To study version control tool.
- 8. To study Continuous Integration tool.
- 9. Perform Testing activities within an agile project.

Dev Ops Laboratory Programs:

- 1. Build & TestApplicationswithContinuousIntegration To Install and Configure Jenkins to test, anddeploy Java or Web Applications usingNetBeans or eclipse.
- 2. VersionControl To Perform Version Control on websites/Software's using different Version control toolslike RCS/CVS/GIT/Mercurial (Any two)
- 3. Virtualization&Containerization To Install and Configure Docker for creatingContainers of different Operating SystemImages
- 4. Virtualization&Containerization To Build, deploy and manage web orJava application on Docker
- 5. SoftwareConfigurationManagement To install and configure Software ConfigurationManagement using Chef/Puppet/Ansible orSaltstack.
- 6. Provisioning To Perform Software ConfigurationManagement and provisioning usingChef/Puppet/Ansible or Saltstack.

MASTER OF COMPUTER APPLICATIONS

Course Code	MEAN STACK DEVELOPMENT I	L	T	P	C
21F00310		1	0	2	2
	Semester		II	I	

Course Objectives:

- To understand basic concepts of JAVASCRIPT.
- To implement concepts of HTML, CSS, and REACT in developing various websites.
- To design solutions to real world scenarios using NODE and EXPRESS JS.
- To Analyze concepts of MONGODB.
- To implement socket programming in MERN stack.

Course Outcomes (CO): Student will be able to

- Understand basic concepts of JAVASCRIPT.
- Implement concepts of HTML,CSS, and REACT in developing various websites.
- Design solutions to real world scenarios using NODE and EXPRESS JS.
- Analyze concepts of MONGODB.
- Implement socket programming in MERN stack.

UNIT – I Lecture Hrs:10

Introduction: data types ,logical operations, functions, object and classes, promise async& await, modules and npm packages, error handling, Document Object module, J Ouery.

UNIT – II Lecture Hrs:10

HTML CSS and REACT : Basic structure of a webpage, Different types of tags , HTML text fundamentals, Creating hyperlinks, Insertion of images and multimedia, Introduction CSS, CSS-selector –internal- external , CSS- inline class background font text colour, CSS-padding margin border, Installation of react , REACT- virtual DOM, REACT-JSX, REACT-components, REACT-prop and state , REACT – lifecycles.

UNIT – III Lecture Hrs:10

Node and Express JS: Introduction of Node JS (Run time environment), Node JS installation, Node JS web based example (import required modules ,create server,read request and return response), Node JS – npm ,errors, crypto, Node JS – child process ,buffer, string, Node JS- string decoder ,query string , Node JS- callbacks , events, web modules, Introduction of APIs, Express JS – introduction , Express JS- installation, Express JS – GET, POST, REQUEST, RESPONSE, Express JS- Routing ,file upload, cookies, middleware .

UNIT – IV Lecture Hrs:10

MongoDB: Introduction of MongoDB, Difference between SQL and NoSQL, MongoDB data types, MongoDB installation, Data modelling in MongoDB, Create database, Drop Database, Create collection, Insert document, Select document, Queries in MongoDB, Sorting data in document, Remove document.

UNIT - V

Socket programming in MERN stack :Connect the react to node by axiom, Import required module, Create server in node, Connect the Node JS to MongoDB, Create request , Read Response, Full Stack Project.

Textbooks:

- 1. Getting MEAN with MONGO, Express angular and node by Simon Holmes, Dreamtech Publishers
- 2. Pro MERN Stack: Full Stack Web App Development with Mongo, Express, React, and Node Paperback 1 April 2017 by Vasan Subramanian (Author)
- 3. Beginning MERN Stack: Build and Deploy a Full Stack MongoDB, Express, React, Node.js App by Greg Lim (Author)

MASTER OF COMPUTER APPLICATIONS

4. Full Stack JavaScript Development with MEAN by COLIN J Ihrig and Adam J bretz.Sitepoint publishers.

MASTER OF COMPUTER APPLICATIONS

Course Code	DEEP LEARNING	L	T	P	С
21F00401a		3	0	0	3
	Semester			IV	
Course Objecti	ves:				
To prese	ent the mathematical, statistical and computational challenges of build	ing			
neural networks					
 To teach 	the concepts of deep learning.				
To intro	duce dimensionality reduction techniques.				
 To enab 	le the students to know deep learning techniques to support real-time				
applications.					
To expla	ain the case studies of deep learning techniques.				
Course Outcom	nes (CO): Student will be able to				
 Identify 	Convolutional Neural Networks models to solve Supervised Learning	5			
Problem	ns .				
• Design	Autoencoders to solve Unsupervised Learning problems				
Apply L	ong Shot Term Memory (LSTM) Networks for time series analysis				
classific	ation problems.				
 Apply C 	Classical Supervised Tasks for Image Denoising, Segmentation and Ob	ject			
detectio	n problems.				
UNIT - I		Lec	cture	Hrs:	
	roduction to machine learning- Linear models (SVMs and Perceptron		_	_	
	Nets: What a shallow network computes- Training a network:				, back
	stochastic gradient descent- Neural networks as universal function ap				
UNIT - II			cture		
	History of Deep Learning- A Probabilistic Theory of Deep Learni				
_	on, batch normalization- VC Dimension and Neural Nets-Deep V				etworks
	letworks - Generative Adversarial Networks (GAN), Semi-supervised				
UNIT - III			cture		
	Reduction: Linear (PCA, LDA) and manifolds, metric learning				
•	eduction in networks - Introduction to Convnet - Architectures - Alex				•
	ng a Convnet: weights initialization, batch normalization, hyper param				on.
UNIT - IV			cture		
*	nd Generalization: Optimization in deep learning— Non-convex of	•			
	nastic Optimization Generalization in neural networks- Spatial Trorks, LSTM - Recurrent Neural Network Language Models- Word-				
	Learning - Computational & Artificial Neuroscience.	·LCV	CI IXI	ATAS C	с Беер
UNIT - V	Computational & Futuricial redioscionec.				
	Applications: Image net- Detection-Audio Wave Net-Natural Langua	oe P	roces	sino	
	nt Detection Bioinformatics- Face Recognition- Scene Understanding	-		_	ige
		Su		0	-0-

Text Books:

Captions.

- 1. Deep Learning", Ian Goodfellow, YoshuaBengio, Aaron Courville, MIT Press 2016.
- 2. "Neural Networks and Deep Learning A Text Book", Charu C Aggarwal, Springer International Publishing AG, Part of Springer Nature 2018.

Course Code	SOCIAL MEDIA ANALYSIS	Т	T	P	C		
Course Code 21F00401b	SUCIAL MEDIA ANAL ISIS	<u>L</u>	0	<u> </u>	<u>C</u>		
211004010	Semester		I		J		
	Deliver			<u>'</u>			
Course Object	ives:						
To insp	ire the students with interest, excitement, and urge to learn the subject	ct of	Socia	ıl			
networl							
 analysis 	5.						
	erstand the fundamental concepts of Social network analysis.						
• To intro	oduce the purpose of learning important aspects in Social network an	alysi	s .				
	nes (CO): Student will be able to						
•	explain basic concepts and theories of network analysis in the social						
	understand how these concepts and theories can help explain differe behaviours as wellasmacro outcomes;	nt ac	tors	mici	:O		
•	critically examine the ways in which networks can contribute to the	ovnl	anati	on of	f		
•	social, political, economic and cultural phenomena;	схрі	anan	on or	L		
•	use statistical software to visualize networks and analyse their prope	erties	. con	necti	ing		
	these to network concepts and theories;		,		0		
•	explain principles underlying statistical models for social networks;						
•	and software to improme statistical models of social networks to analyse network						
	formation and evolution;						
•	use software to simulate the dynamics of networks based on social r						
UNIT - I			ture]				
	Web - Limitations of current Web – Development of Semantic Web						
	o - Network analysis -Development of Social Network Analysis	- K	ey c	once	pts		
	network analysis - Electronic sources for network onic discussion networks, Blogs and onlinecommunities, Web-b	hood	nota	work	·C		
	SocialNetwork Analysis	ascu	Hetv	NOI K	s -		
UNIT - II	Social (ctwork r marysis	Lec	ture 1	Hrs:1	10		
	eir role in the Semantic Web - Ontology-basedKnowledge Represen						
	ne SemanticWeb -RDF and OWL - Modelling and aggregating soci						
	in network data representation, Ontological representation of soc						
	presentation of social relationships, Aggregating and reasoni	ng	with	soc	cial		
	dvanced Representations	-			1.0		
UNIT - III	stion of Wah Community from a Coming of Wah Aughing Detection		ture]				
Social Network	ution of Web Community from a Series of WebArchive - Detecting ks - Definition of Community - Evaluating Communities		nmui Ietho				
	ection & Mining -Applications of Community Mining Algorithments				for		
	nunities Social Network Infrastructures and Communities-Application						
_	atiment Analysis, Stock Market Predictions		- Cus	2000	-100		
UNIT - IV		Lec	ture]	Hrs:9)		
•	and Predicting Human Behavior for SocialCommunities - User D			_			
	Distribution- Enabling New Human Experiences - Reality Mi	ning	- (Conte	ext-		
	vacy in Online Social Networks	_					
UNIT - V	Englishment Touris Mall D. 1 C.11 C. V. T. C. V.		ture]				
	Environment - Trust Models Based on SubjectiveLogic - Trust Neity Analysis Combining Trust and Reputation Trust Deriv			•			
	ity Analysis -Combining Trust and Reputation - Trust Derivons - Attack Spectrum and Countermeasures	auoi	т Ба	scu	OII		
Trusicomparis	7 mack open and Counter measures						

MASTER OF COMPUTER APPLICATIONS

Textbooks:

- 1. Charu C. Aggarwal, "Social Network Data Analytics", Springer, 2011.
- 2. GuandongXu ,Yanchun Zhang and Lin Li, "Web Mining and Social Networking Techniques and applications", Springer, first edition, 2011.

Reference Books:

- 1. Peter Mika, "Social networks and the Semantic Web", Springer, first edition 2007.
- 2. BorkoFurht, "Handbook of Social Network Technologies and Applications", Springer, first edition, 2010.
- 3. Dion Goh and Schubert Foo, "Social information retrieval systems: emerging technologies and applications for searching the Web effectively", IGI Global snippet, 2008. 133
- 4. Max Chevalier, Christine Julien and Chantal Soulé-Dupuy, "Collaborative and social information retrieval and access: techniques for improved user modelling", IGI Global snippet, 2004.

Online Learning Resources:

- 1. www.utdallas.edu
- 2. ibook.ics.uci.edu
- 3. www.ebmtools.org

MASTER OF COMPUTER APPLICATIONS

Course Code	MULTIMEDIA SYSTEMS & TOOLS	L	T	P	C
21F00401c		3	0	0	3
	Semester			IV	
Course Objectiv	es:				
 Formulat 	e a working definition of interactive multimedia				
 Demonst 	rate competence in using the authoring program Hyper Studio				
 Outline the 	he use of animation, digitized sound, video control, and scanned ima	iges			
 Illustrate 	the use of Netscape to access the Course Home Page and Tips and T	Fricks	s;		
Course Outcome	es (CO): Student will be able to				
Create a	well-designed, interactive Web site with respect to current standards	and			
practices					
	rate in-depth knowledge in an industry-standard multimedia develop	omen	t		
	iated scripting language				
	e the appropriate use of interactive verses standalone Web applicati	ons			
	ne-based and interactive multimedia components				
	ssues and obstacles encountered by Web authors in deploying Web-	base	1		
Applications	I	T	. 7	T	
UNIT – I			ture I		1
	ia Overview, Definition Applications and Design, Authoring (Hyp			Intro	luction
• •	The Metaphor, The Basics (Cards, Buttons, Text), HyperStudio, Res			N / 1/	
	thoring- Multimedia Authoring Metaphors, Multimedia Pro				
	tomatic Authoring, Some Useful Editing and Authoring Too	ois, A	Auob	e Pre	emiere
UNIT – II	ector, Macromedia Flash, Dreamweaver.	Lag	ture I	Inc.	
	nol Decian Objectives Content (mint quanties sounds etc.) In				amant
	onal Design, Objectives, Content (print, graphics, sounds, etc.), In				
	Design: Metaphors and Themes, Colors and Backgrounds, Text (sistency	ize, c	color,	prace	ment)
Navigation, Cons	istericy.	Lag	ture I	Tmo.	
UNIT – III	one and Links Has of Cound HymanStudia Counds Deconding				ntonno
	ons and Links, Use of Sound, HyperStudio Sounds, Recording				
	hics, Integrating Web documents, HyperStudio Tips and Tricks,	AIIIII	alion	ı, Lau	пспп
other applications UNIT – IV	s and documents	Tas	T	Tana	
	die Deutfelies Designing a termulate Adding elemente Changin		ture I		
	edia Portfolios, Designing a template, Adding elements, Choosing				vance
	Hyperlinks, Drag-n-Drop, Advanced NBA's, Using Actions with oth	er Ot	jecis	•	
UNIT – V	Lital Madio Ovial Time Mavine Learning and CD DOM and all				
incorporating Dig	gital Media, QuickTime Movies, Laserdisc and CD-ROM control, so	zannı	ng.		
Text Books:					
1. Marcia K	Superberg, A Guide to Computer Animation: for TV, games, multim	edia a	and		
	al Press (Taylor and Francis Group), 2002.				
		r 11			

2. Z. N. Li and M. S. Drew, "Fundamentals of Multimedia", Pearson Prentice Hall

	MASTER OF COMPUTER APPLICATIONS				
Course Code	CYBER LAWS	L	T	P	С
21F00402a		3	0	0	3
	Semester			IV	
Course Objectives					
	ves of this course are to enable the learner to understand, explore,	and	acqui	re a	
critical understandi					
	earner with competencies for dealing with frauds and deceptions,	and o	ther		
•	ke place via the Internet				
Course Outcomes					
	I the social and intellectual property issues emerging from cybersp				
 Understand 	I the policy regulations of cyber space employed by various count	ries			
 Understand 	I the relationship between commerce and cyberspace.				
 Gain the kr 	nowledge of Information Technology Act				
UNIT - I					
Conceptual and the	oretical perspective of Cyber Law, Computer and Web Technolog	gy,			
Development of Cy	ber Law, National and International Perspective Cyber Law, Lega	al issu	ies ar	nd	
challenges in India,	, USA, Data Protection, Cyber Security.				
UNIT - II					
Jurisdiction issues	in Transactional Crimes Cyber Law, International Perspective, Bu	dapes	st		
Convention on Cyb	percrime. Hacking and Legal Issues, Privacy legal issues				
UNIT - III					
Cyber Law and IPF	R, Understanding Copyright in Information Technology, Software	Copy	right	S	
Copyright in Intern	et & D Hultimedia, Software Piracy, Trademarks in Internet D	omaii	n Ñar	ne	
	n Name disputes, Icann's core principles and domain names, Net				
Databases in IT, Pr	otection of databases, Position in USA, EU and India.				
UNIT - IV					
E-Commerce, UNC	CITRAL Model, Legal Aspects of E-Commerce, E-Taxation, E-Ba	nkin	g,		
Online Publishing a	and online credit card payment, Employment Contracts, Non-Disc	losur	e		
Agreements.					
UNIT - V					
	ology Act 2000, Aims and Objectives, Overview of the Act, Jurisc			·	
	nce, Electronic Evidence, Digital Signature Certificates, Digital S				
	ers, Role of Certifying Authorities, Regulations Appellate Tribuna	l, Inte	ernet		
	and their liabilities, Social Networking Sites.				
Text Books:					

1. Law Relating to Computer, Internet and E-Commerce by KamathNandan, 5th Edition, Universal Law

MASTER OF COMPUTER APPLICATIONS

Course Code	ENTREPRENEURSHIP	L	T	P	С
21F00402b		3	0	0	3
	Semester			IV	
Course Objective	s:				
	f this course is to have a comprehensive perspective of inclusive l	earni	ng, al	bility	tolearn
and imple	ment the fundamentals of Entrepreneurship.				
Course Outcomes:					
	basics of Entrepreneurship and entrepreneurial development whision for their own Start-up.	nich	will h	nelp t	hem to
_	sion for their own start-up.				
UNIT - I					
Entrepreneurial Pe					
Introduction to En	trepreneurship – Evolution - Concept of Entrepreneurship - Types	of			
	trepreneurial Competencies, Capacity Building for Entrepreneurs.				
Entrepreneurial Tr	aining Methods				
- Entrepreneurial N	Motivations - Models for Entrepreneurial Development - The proce	ess of			
Entrepreneurial De	evelopment				
UNIT - II					
New Venture Crea	tion				
	ility of Entrepreneurs, Models for Opportunity Evaluation; Busines				
Purpose, Contents,	Presenting Business Plan, Procedure for setting up Enterprises, Co	entral	leve	1 -	
	evel - T Hub, Other Institutions initiatives.				
UNIT - III					
Management of M	SMEs and Sick Enterprises				
Challenges of MSI	ME s, Preventing Sickness in Enterprises – Specific Management I	Proble	ems;		
Industrial Sickness	s; Industrial Sickness in India – Symptoms, process and Rehabilitat	tion c	f Sic	k	
Units					
UNIT - IV					
	ng and Growth of Enterprises				
Essential Marketin	g Mix of Services, Key Success Factors in Service Marketing, Cos	st and	Prici	ing,	
	chniques in Marketing, International Trade.			-	
UNIT - V					
Strategic perspecti	ves in Entrepreneurshin				

Strategic perspectives in Entrepreneurship

Strategic Growth in Entrepreneurship, The Valuation Challenge in Entrepreneurship, The Final Harvest of New Ventures, Technology, Business Incubation, India way – Entrepreneurship; Women Entrepreneurs – Strategies to develop Women Entrepreneurs, Institutions supporting Women Entrepreneurship in India.

Text Books:

- 1. Entrepreneurship Development and Small Business Enterprises, Poornima M.Charantimath, 2nd edition, Pearson, 2014.
- 2. Entrepreneurship, a South Asian Perspective, D.F. Kuratko and T.V.Rao, 3rd edition, Cengage, 2012.
 - 3. Entrepreneurship, Arya Kumar, 4th edition, Pearson 2015.

MASTER OF COMPUTER APPLICATIONS

21F00402c 3 0 0 3	Course Code	NOSQL DATABASES	L	T	P	C
Semester IV	21F00402c		3	0	0	3
		Semester	IV			

Course Objectives:

• Distinguish the different types of NoSQL databases. Understand the impact of the cluster on database design. State the CAP theorem and explain it main points

Course Outcomes:

- Define, compare and use the four types of NoSQL Databases (Document-oriented, KeyValue Pairs, Column-oriented and Graph).
- Demonstrate an understanding of the detailed architecture, define objects, load data, query data and performance tune Column-oriented NoSQL databases.
- Explain the detailed architecture, define objects, load data, query data and performance tune Document-oriented NoSQL databases.

UNIT – I

Define, compare and use the four types of NoSQL Databases (Document-oriented, KeyValue Pairs, Column-oriented and Graph).

- Demonstrate an understanding of the detailed architecture, define objects, load data, query data and performance tune Column-oriented NoSQL databases.
- Explain the detailed architecture, define objects, load data, query data and performance tune Document-oriented NoSQL databases.

UNIT – II

Comparison of relational databases to new NoSQL stores, MongoDB, Cassandra, HBASE, Neo4j use and deployment, Application, RDBMS approach, Challenges NoSQL approach, Key-Value and Document Data Models, Column-Family Stores, Aggregate-Oriented Databases

UNIT – III

Replication and sharding, MapReduce on databases. Distribution Models, Single Server, Sharding, Master-Slave Replication, Peer-to-Peer Replication, Combining Sharding and Replication.NoSQL Key/Value databases using MongoDB, Document Databases, What Is a Document Database? Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Web Analytics or Real-Time Analytics, E-Commerce Applications, When Not to Use, Complex Transactions Spanning Different Operations, Queries against Varying Aggregate Structure.

UNIT – IV

Column- oriented NoSQL databases using Apache HBASE, Column-oriented NoSQL databases using Apache Cassandra, Architecture of HBASE, What Is a Column-Family Data Store? Features, Consistency, Transactions, Availability, Query Features, Scaling, Suitable Use Cases, Event Logging, Content Management Systems, Blogging Platforms, Counters, Expiring Usage, When Not to Use.

UNIT – V

NoSQL Key/Value databases using Riak, Key-Value Databases, What Is a Key-Value Store, Key-Value Store Features, Consistency, Transactions, Query Features, Structure of Data, Scaling, Suitable Use Cases, Storing Session Information, User Profiles, Preferences, Shopping Cart Data, When Not to Use, Relationships among Data, Multioperation Transactions, Query by Data, Operations by Sets.

Text Books:

1.NoSQL Distilled: A Brief Guide to the Emerging World of Polyglot Persistence Sadalage, P. &FowlerPearson Education